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Abstract. In many types of linear, convex and nonconvex optimization problems over
polyhedra, a global optimal solution can be found by searching the extreme points of the outcome
polyhedron Y instead of the extreme points of the decision set polyhedron Z. Since the dimension
of Y is often significantly smaller than the dimension of Z, and since the structure of Y is often
much simpler than the structure of Z, such an approach has the potential to often yield significant
computational savings. This article seeks to motivate these potential savings through both general
theory and concrete examples. The article then develops two new procedures. The first procedure
is linear-programming based and finds an initial extreme point of an outcome polyhedron Y. The
second procedure provides a mechanism for moving from a given extreme point y of Y along any
chosen edge of Y emanating from y until a neighboring extreme point to y is reached. As a
by-product of the second procedure, as in the pivoting process of the simplex method, a complete
algebraic description of the chosen edge can also be easily obtained.
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1. Introduction

Many types of single and multiple objective linear, convex and global optimization
problems (P) can be written

min g(z), s.t. z [ Z ,
nwhere Z is a nonempty, compact polyhedral feasible decision set in R , and g is

neither a single-valued or multi-valued mapping defined on a suitable subset of R .
For a significant number of these problems, by defining a suitable p 3 n matrix D,

]an optimal solution in Z can be found by minimizing an appropriate mapping g( y)
over the outcome polyhedron (or outcome set)

pY 5 hy [ R u y 5 Dz for some z [ Zj , (1)

rather than by examining or searching Z. Notice that this is equivalent to solving the
problem

]min g( y) ,

s.t. y 5 Dz ,

z [ Z ,
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]although we focus on the formulation where we minimize g( y) over Y, where Y is
defined by (1), to emphasize the role of the outcome polyhedron Y.

To globally solve problem (P), significant computational savings can potentially
]be achieved by minimizing g( y) over Y instead of by directly examining or

searching Z. This is in part because, as we shall see, p is typically much smaller
than n, so that the outcome polyhedron Y will typically have a much smaller
dimension than Z. It is also because, as we shall see, Y can be expected to have a far
simpler structure than Z. Furthermore, in many cases, the global optimal value of
]g( y) over the outcome polyhedron Y is guaranteed to exist at an extreme point of Y.
As we shall see, Y can be expected to have far fewer faces, including fewer extreme
points, than Z. As a result, in these cases, the opportunity arises to employ simplex
method-type pivoting among the extreme points of Y to help to globally optimize
]g( y) over Y. For these cases, such an approach can potentially yield especially
significant computational savings.

This article has three purposes. First, it seeks, through both general theory and
concrete examples, to motivate the potential benefits to be accrued by developing
procedures for finding an extreme point and pivoting in a simplex-method manner
among the extreme points of the outcome polyhedron Y. Second, as a first step for
such procedures, the article develops and validates a linear programming-based
method for finding an initial extreme point of the outcome polyhedron Y. Third, the
article develops mechanics suitable for moving from a given extreme point y of Y
along any chosen edge of Y emanating from y until the extreme point neighbor to y
along this edge is reached. As a by-product of this pivoting process, as in the
pivoting process of the simplex method, a complete algebraic description of the
chosen edge can also be easily obtained. This part of the article was motivated, in
part, by some related work of Dauer and Liu [9].

The organization of this article is as follows. In Section 2, to motivate the
research to be presented, we demonstrate via theoretical arguments and concrete
examples the potential benefits to be obtained by developing procedures for pivoting
among the extreme points of an outcome polyhedron. In Section 3 we present some
theoretical results of potential use for finding an initial extreme point of an outcome
polyhedron. Based upon some of these results, we then give and validate a finite,
linear programming-based procedure for finding an initial extreme point of the
outcome polyhedron Y. In Section 4, after giving some necessary preliminary
results, a procedure is presented that, for the first time, solves the neighborhood
problem [13, 14, 18] for the outcome polyhedron Y. The mechanics for pivoting in a
simplex method-like manner among the neighboring extreme points of Y follow
immediately from this procedure. To illustrate the initialization and pivoting
procedures for Y, they are applied to small examples in Sections 3 and 5,
respectively.

2. Motivation
nThroughout this article, Z will denote a nonempty, compact polyhedron in R , and
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D will represent a p 3 n matrix of real numbers. In addition, let the outcome
polyhedron (or outcome set) Y be defined throughout by

pY 5 hy [ R u y 5 Dz for some z [ Zj .

For economy of notation, Y is also denoted Y 5 D[Z]. It can be shown that Y is a
pnonempty, compact polyhedron in R ; see, for example, Rockafellar [22, p. 174].

The reason for calling Y an outcome polyhedron is as follows. In many types of
single objective and multiple objective optimization problems (P), both convex and
nonconvex, the feasible decision set can be represented by linear constraints that

ndefine a nonempty, compact polyhedron Z [ R . For a significant number of these
problems, if D is defined appropriately, a global optimal solution z* [ Z and the
global optimal objective function value v for problem (P) can be found by globally

p]minimizing a suitable function or mapping g of y [ R over the set Y 5 D[Z],
rather than by minimizing the original objective function or mapping over Z. In this
sense, Y represents the feasible outcomes of the decisions z [ Z under the mapping
D, and Y is therefore called an outcome polyhedron. In addition, we will refer to the

]vector or vectors found by globally minimizing g over Y as global optimal
outcomes.

The importance of the outcome polyhedron Y is two-fold. First, Y can be expected
to have a significantly smaller dimension and a significantly simpler structure than
Z. In particular, the value of p in the p 3 n matrix D in optimization applications is
frequently significantly smaller than the number of decision variables n. Since, by
[5], the dimension of Y cannot exceed the rank of D, this implies that the dimension
of Y in applications is never more than p and, hence, can be expected to be
significantly smaller than the dimension of Z. Furthermore, from [4], since p is
typically much smaller than n, Y can be expected to have far fewer extreme points
and far fewer faces than Z. In addition, from [4], since p is typically much smaller
than n, the dimensions of the faces of Y can be expected to be far smaller than those
of Z, and large numbers of extreme points of Z can be expected to be mapped by D
either into a single extreme point of Y or into non-extreme points of Y.

Second, it is often the case that a global optimal outcome y* [ Y is guaranteed to
exist at an extreme point of Y. When this is the case, the opportunity becomes
available to solve for a global optimal outcome y* [ Y by adapting to the outcome
set problem any of a large number of domain-based algorithms that rely either partly
or completely upon simplex method-like pivoting.

Taken together, these two properties of the outcome polyhedron Y imply that
when Z represents the feasible decision set of an optimization problem (P),
significant computational savings can be expected to accrue when problem (P) is

]solvable by minimizing a suitable function or mapping g( y) over Y, especially when
it can be shown that a global optimal outcome exists at an extreme point of Y. In
many cases, the latter property can be shown to hold. For instance, from [5] and [7],
this property holds for certain linear programming problems, in multiple objective
linear programming, in bilinear programming, in problems of optimization over
efficient sets, and in linear multiplicative programming.
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In order to demonstrate that, in practice, having available a mechanism for
pivoting among the extreme points of Y can potentially yield very efficient methods
computationally for globally solving problem (P), let us consider in some detail two
of the problem classes mentioned above. For additional examples, see the working
papers [5] and [7]. For any convex set W, let W represent the set of all extremeex

points of W.

EXAMPLE 2.1. Bilinear Programming. A typical bilinear programming problem
has the form

]Tv 5 minkc, xl 1 x Dz 1 kd, zl , (PZ1)1

s.t.

x [ X, z [ Z ,

] ]p ]where X # R is a nonempty, compact polyhedron, D is a p 3 n matrix of real
]p nnumbers, c [ R , d [ R and, as before, Z is a nonempty, compact polyhedron in

nR . The bilinear programming problem is one of the oldest and most frequently
encountered global optimization problems in mathematical programming. It was first
studied in the 1960s. At that time, proposed solution methods were either locally
convergent or completely enumerative. Subsequently, global solution procedures
using extreme point ranking, relaxation methods, cutting planes, or branch and
bound approaches were proposed. Applications of bilinear programming have been
made to bimatrix games, to certain assignment problems, to multicommodity
network flow problems, and to other areas of production and planning. For more
details concerning bilinear programming, see Horst and Tuy [15], Konno et al. [17],
Quesada and Grossmann [21] and references therein.

It is not difficult to show that bilinear program (PZ1) has a global optimal
solution (x*, z*) such that x* [ X and z* [ Z [17, Proposition 7.4]. Indeed,ex ex

certain solution algorithms for bilinear programming take advantage of this property.
]p1nHowever, these algorithms also may work in R to globally solve problem (PZ1),

]where (p 1 n) may be relatively large.
]Let p 5p 1 1, and set Y 5 D[Z], where D is the p 3 n matrix with row i equal to
] T]row i of D for each i 5 1, 2, . . . , p, and with row p equal to d . Let a typical

T T T] ] ]element y of Y be represented by y 5 (y , y ), where y 5 y , i 5 1, 2, . . . , p. Then,p i i

following an approach similar to that of Konno et al. [17, pp. 343–344], we may
write v as1

]v 5 minkc, xl 1 ky, xl 1 y ,1 p

s.t.

x [ X, y [ Y ,
]5min[y 1min(ky, xl 1 kc, xl)],p

y[Y x[X
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]5min g( y) , (2)
y[Y

]where g : Y → R is defined for each y [ Y by

] ]g( y) 5 y 1min(ky, x) 1 kc, xl) . (3)p
x[X

] ]Since g : Y → R is a concave function, the global minimum of g over Y is attained at
an extreme point of Y [19]. Furthermore, from (3) and Benson [4, p. 237], since
Y 5 D[Z] and Z is compact, for each global optimal solution y* [ Y for (2), thereex

exists a point x* [ X and a point z* [ Z such that x* solves the minimizationex ex

problem in (3), y* 5 Dz* and (x*, z*) is a global optimal solution for problem
(PZ1).

The arguments above demonstrate that by solving the concave minimization,
outcome set-based problem (PY1) given by (2) for an extreme point global optimal
solution, the decision set-based problem (PZ1) is also globally solved. Since

p ] ]Y # R , where p 5 (p 1 1) is typically smaller than p 1 n, from our earlier
discussions in this section, the reduction in dimensionality obtained by using this
outcome set approach can potentially be quite significant computationally, especially
because problem (PZ1) is a global optimization problem.

To globally solve problem (PY1), one could potentially adapt as needed the
approaches of a number of concave minimization algorithms designed for solving
decision set-based problems. Included among these are several algorithms that rely
significantly upon procedures for pivoting among the neighboring extreme points of
a polyhedron [2, 3, 15]. To adapt algorithms such as these to globally solving
problem (PY1), mechanisms for pivoting among the extreme points of the outcome
polyhedron Y will be needed. As we have seen, such an adaptation has the potential
to yield significant computational savings.

EXAMPLE 2.2. Linear Multiplicative Programming. The linear multiplicative
programming problem may be written

p

v 5 min P kD , zl, s.t. z [ Z , (PZ2)2 i
i51

where, for each i 5 1, 2, . . . , p, D represents row i of D and for each z [ Z,i

kD , zl . 0. Notice in problem (PZ2) that the minimum v is achieved. It isi 2

well-known that problem (PZ2) generally has many local optima that are not global
optima. In recent years, a resurgence of interest in problem (PZ2) has occurred [6,
11, 16, 17, 23, 24, 26, 27]. This is due, in part, to the variety of applications of the
problem. It is also because global optimization codes and rapid advances in
high-speed computing are now allowing for the global solution of problem (PZ2) for
the first time [17].

It can be shown [6, p. 493], that g : Z → R defined for each z [ Z by
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p

g(z) 5 P kD , zli
i51

is a quasiconcave function. As a result, problem (PZ2) has a global optimal solution
that belongs to Z [19].ex

Since Y 5 D[Z], we have

p

v 5 min P kD , zl, s.t. z [ Z2 i
i51

p

5 min P y , s.t. y [ Y . (4)i
i51

]Because the function g : Y → R defined for each y [ Y by
p

]g( y) 5 P yi
i51

is quasiconcave [6, p. 493], the global optimization problem (PY2) in (4) has a
global optimal solution y* [ Y [15]. Furthermore, from (4) and Benson [4, p. 237],ex

since Z is compact, for each global optimal solution y* [ Y for problem (PY2),ex
]there will exist a point z* [ Z such that g(z*) 5 g( y*). It follows that to find aex

global extreme point optimal solution for problem (PZ2), one may instead solve the
optimization problem (PY2) for a global extreme point optimal solution.

Since p is typically considerably smaller than n in applications of the linear
multiplicative programming problem (PZ2), the potential benefits of globally
solving problem (PY2) instead of problem (PZ2) are significant, especially because
problem (PZ2) is a global optimization problem. To globally solve problem (PY2),
one may modify as needed the mechanics of any of a number of concave
minimization algorithms that have been designed for problems such as problem
(PZ2) [2, 3, 15]. Several of these algorithms involve, in part, pivoting from extreme
point to neighboring extreme point in Z. Therefore, if these types of algorithms are
modified and applied to solving problem (PY2), mechanisms for pivoting among the
extreme points of the outcome polyhedron Y will be needed. As we have seen, using
such mechanisms can potentially yield significant computational savings.

3. Finding an initial extreme point of Y

Since Y is a nonempty, compact polyhedron, Y is a nonempty set [22, p. 167].ex

Furthermore, because Z is compact and Y 5 D[Z], for each element y of Y , thereex

exists at least one element z of Z such that y 5 Dz [4, p. 237]. Unfortunately,ex

however, not every element z of Z satisfies the condition that y 5 Dz [ Y . In fact,ex ex

impressively-large numbers of elements of Z can be mapped by D into non-ex

extreme points of Y (for details and examples, see Benson [4]). In this section, we
develop some necessary and sufficient conditions for a point z [ Z to satisfyex

y [ Y , where y 5 Dz. Based upon some of these results, we then give and validateex
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a finite, linear programming-based procedure that is guaranteed to find a point
y [ Y . For brevity, the reader will be referred to [5] for proofs of several of theex

results given in this section.
Throughout the remainder of the article we will assume, without loss of

generality, for some m 3 n matrix A with rank m, where m < n, and for some vector
mb [ R , that Z can be represented by

nZ 5 hz [ R u Az 5 b, z > 0j .

Recall from linear programming theory and the simplex method of linear program-
ming that if z [ Z , then we may choose an invertible m 3 m basis matrix B for zex

consisting of m columns of A such that

21 21z 5 B b 2 B Nz ,B N

where N is the (n 2 m) 3 m matrix consisting of the columns of A that do not belong
mto B, z [ R is the vector of basic variables corresponding to B, and z 5 0 [B N

n2mR is the vector of nonbasic variables [12, pp. 19–21]. If, in addition, y 5 Dz,
then it follows that

21y 5 D B b 2 Rz ,B N

where D is the p 3 m matrix of the columns of D corresponding to B, and R is theB

p 3 (n 2 m) reduced cost matrix given by

21R 5 D 2 D B N ,N B

where D is the p 3 (n 2 m) matrix consisting of the columns of D that do notN

belong to D . Let r , j 5 1, 2, . . . , n 2 m, denote the columns of R, and letB j

J 5 h j [ h1, 2, . . . , n 2 mj u r ± 0j. Notice that if R 5 0, then Y consists of the singlej

point y, so that y [ Y . Therefore, we can assume henceforth that R ± 0, so thatex

J ± 5. Recall that if z [ Z , and if B is a basis matrix for z, then B is said to beex

nondegenerate when z . 0.B

THEOREM 3.1. Assume that z [ Z and that y 5 Dz. Let B denote a basis matrixex

for z, and consider the linear system

O a r 5 0 , (5)j j
j[J

a > 0 , j [ J . (6)j

(a) If the unique solution to the linear system (5)–(6) is a 5 0, j [ J, thenj

y [ Y .ex

(b) If y [ Y and B is nondegenerate, then the unique solution to the linearex

system (5)–(6) is a 5 0, j [ J.j

Proof. See [5]. h
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REMARK 3.1. When the unique solution to the linear system (5)–(6) is a 5 0,j

j [ J, then the set hr u j [ Jj is called a positively independent set of vectors [10].j

As a result of Theorem 3.1, we obtain the following corollaries.

COROLLARY 3.1. Assume that z [ Z and that y 5 Dz. Let B denote a basisex

matrix for z, and consider the linear inequality system

kr , wl > 1 , j [ J . (7)j

(a) If (7) has at least one solution, then y [ Y .ex

(b) If y [ Y and B is nondegenerate, then (7) has at least one solution.ex

Proof. See [5]. h

From the simplex method, when z [ Z , we know that a sufficient condition forex
T ] ](7) to have a solution is that z uniquely minimize w Dz over z [ Z for some

pw [ R . This yields the following result.

COROLLARY 3.2. Assume that z [ Z and that y 5 Dz. If z is the unique optimalex

solution to the linear programming problem
T ] ]min w Dz, s.t. z [ Z (P )w

pfor some w [ R , then y [ Y .ex

Notice that if z [ Z and y 5 Dz [ Y , then it is not necessary for z to be aex ex
punique optimal solution to problem (P ) for some w [ R . This is demonstrated byw

the following example.

EXAMPLE 3.1. Assume that n > 3, let
2nZ 5 hz [ R u z 1 z 5 1, j 5 1, 2, . . . , n, z > 0j ,j j1n

and let D be the 2 3 2n matrix whose first two columns form the 2 3 2 identity
matrix and whose remaining columns are all zeroes. Then Y 5 D[Z] is a unit square

2 T 2nin R , and y 5 (1, 1) satisfies y [ Y . Notice that if we define z [ R byex

1 if 1 < j < n ,
z 5Hj 0 if (n 1 1) < j < 2n ,

2then z [ Z and y 5 Dz. However, it is easy to see that for each w [ R such that zex

is an optimal solution to the linear program (P ), problem (P ) has multiple optimalw w

solutions.

pFrom linear programming theory, we know that for any fixed w [ R , if z is the
unique optimal solution to problem (P ), then z [ Z . Combined with Corollary 3.2,w ex

pthis implies that if, for some w [ R , the linear program (P ) in Corollary 3.2 has aw
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unique optimal solution z, then y 5 Dz is an extreme point of Y. This raises the
pquestion of whether or not an element of Y can be found when for some w [ R ,ex

the linear program (P ) has multiple optimal solutions. The next result answers thisw

question, at least in theory.

THEOREM 3.2. Consider the linear programming problem (P ) defined inw
pCorollary 3.2. Suppose that for some w [ R , problem (P ) has multiple optimalw

solutions. Then there exists an optimal solution z [ Z to problem (P ) such thatex w

y 5 Dz [ Y .ex

Proof. See [5].

REMARK 3.2. Since Z is bounded, whenever the linear program (P ) in Corollaryw
p3.2 has multiple optimal solutions for some w [ R , it will have multiple optimal

solutions that are extreme points of Z [20, pp. 131, 139]. Although methods exist for
iteratively finding all extreme point optimal solutions for a linear program, these
methods are relatively inefficient computationally [25, Ch. 4]. To use Theorem 3.2
in practice to help to find an element of Y would require not only using one ofex

these methods to iteratively find alternate optimal solutions z [ Z for problemex

(P ), but also testing each such point z found to see if y 5 Dz [ Y . Thus, thew ex

implementation of Theorem 3.2 in practice may be rather cumbersome, at best.
The following result will be important in helping to develop the procedure for

finding an element of Y .ex

THEOREM 3.3. For each i 5 1, 2, . . . , p, let D denote row i of D. Let v denotei 1

the optimal value for the linear program

minkD , zl s.t. z [ Z , (LPD )1 1

ˆand, for each i 5 2, 3, . . . , ı, let v denote the optimal value for the linear programi

minkD , zl , (LPD )i i

s.t.

kD , zl 5 v , k 5 1, 2, . . . , i 2 1 ,k k

z [ Z ,
iˆ ˆwhere 2 < ı < p. Suppose that i [ h1, 2, . . . , ı j. If z is the unique optimal solution

ni i ito problem (LPD ), then z [ Z and Dz 5y [ Y .i ex ex] ]i ] ] ] ]Proof. Suppose that y 5 ay 1 (1 2 a)y for some y, y [ Y and a [ R such that
] ] ] ]] ] ] ] ] ] ] ]ˆ0 , a , 1, where 1 < i < ı. Since y, y [ Y, Dz 5y and Dz 5y for some z, z [ Z.

iTherefore, by definition of y ,

]i ] ]Dz 5 aDz 1 (1 2 a)Dz .
iFrom this equation, since z is an optimal solution to problem (LPD ), we obtain thati

for each k 5 1, 2, . . . , i,
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]i ] ]v 5 kD , z l 5 akD , zl 1 (1 2 a)kD , zl . (8)k k k k

] ]] ] ] ]With k 5 1, since z, z [ Z and 0 , a , 1, (8) implies that z and z are optimal
]] ]solutions to problem (LPD ). As a result, z and z are feasible solutions to problem1

(LPD ). By setting k 5 2 in (8), since 0 , a , 1, this implies together with (8) that2] ]] ] ] ]z and z are optimal solutions to problem (LPD ). As a result, z and z are feasible2

solutions to problem (LPD ). With k 5 3 in (8), this implies in a similar manner that3]] ]z and z are optimal solutions to problem (LPD ). By continuing in this fashion, we3] i] ]see that z and z are optimal solutions to problem (LPD ). Since z is the uniquei] ]i i] ] ] ]optimal solution to problem (LPD ), it follows that z 5z 5 z . Therefore, y 5y 5 y ,i
iso that, by definition, y [ Y .ex

i iSince z is an optimal solution to linear program (LPD ), z [ Z andi

ikD , z l 5 v , k 5 1, 2, . . . , i 2 1 .k k

iIt follows that z is an optimal solution to linear program (LPD ) for eachk

k 5 1, 2, . . . , i. For each k [ h2, 3, . . . , ij, from [20, pp. 139–141], the optimal
solution set of linear program (LPD ) is a (polyhedral) face of the polyhedralk

feasible region of problem (LPD ), and the optimal solution set of linear programk21

(LPD ) is a (polyhedral) face of Z. Therefore, from Rockafellar [22, p. 163], the1
ioptimal solution set Z* of problem (LPD ) is a face of Z. Since z is the uniquei i

ioptimal solution to problem (LPD ), this implies that z is an extreme point of Z. hi

Assume without loss of generality that rank D 5 q, where 1 < q < p and that
hD u i 5 1, 2, . . . , qj is a set of any q linearly independent rows of D. We may nowi

present the following simple procedure, which is guaranteed to find an element of
Y . It uses the linear programming problems (LPD ), i 5 1, 2, . . . , q, each of whichex i

is defined in Theorem 3.3.
1Step 1. Find any point z [ Z that is an optimal solution to the linear programex

1(LPD ). If z is the unique optimal solution to problem (LPD ), then STOP:1 1
n1 1y 5Dz [ Y . Otherwise, let v denote the optimal value of problem (LPD ), setex 1 1

i 5 2, and go to Step i.
iStep i (i 5 2, 3, . . . , q). Find an optimal solution z to the linear program (LPD ). Ifi

iz is the unique optimal solution to problem (LPD ), or if i 5 q, then STOP:i
ni iy 5Dz [ Y . Otherwise, let v denote the optimal value of problem (LPD ), setex i i

i 5 i 1 1, and go to Step i.

iTHEOREM 3.4. The procedure above terminates in Step i with a point y [ Y ,ex

where i is some element of h1, 2, . . . , qj.

1 1Proof. If the procedure stops in Step 1, then y 5 Dz [ Y by Corollary 3.2. Ifex

the procedure stops in Step i for some i such that 2 < i < q 2 1, then, by Theorem
i i q3.3, y 5 Dz [ Y . If the procedure stops in Step q and z is the unique optimalex

q qsolution to problem (LPD ), then y 5 Dz [ Y by Theorem 3.3.q ex
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qNow suppose that the procedure stops in Step q, but z is not the unique optimal
solution for problem (LPD ). Then, using logic similar to the logic used in the proofq

nq qof Theorem 3.3, it follows that y 5Dz is an optimal solution to the linear program

min y , (LPY )q q

s.t.
y 5 v , k 5 1, 2, . . . , q 2 1 ,k k

y [ Y .
] q] ] ]Suppose for some y, y [ Y and a [ R such that 0 , a , 1 that y 5 ay 1 (1 2

]] ]a)y. By using logic similar to that used in the proof of Theorem 3.3, it follows that y
]]and y are optimal solutions to problem (LPY ), and that for each k 5 1, 2, . . . , q,q

]q ] ]y 5y 5y . (9)k k k

] ] ] ]] ] ] ] ] ] ] ]Since y, y [ Y, we may choose z, z [ Z such that y 5 Dz and y 5 Dz. From (9), this
implies that for each k 5 1, 2, . . . , q,

]q ] ]kD , z l 5 kD , zl 5 kD , zl . (10)k k k

Because rank D 5 q and hD u k 5 1, 2, . . . , qj is a linearly independent set, fromk

(10) it is easy to show that for each k [⁄ h1, 2, . . . , qj,
]q ] ]kD , z l 5 kD , zl 5 kD , zl .k k k

] ]q q] ] ] ]Combined with (10), this implies that Dz 5 Dz 5 Dz. Therefore, y 5y 5y, so that
qy [ Y .ex

Since q is a finite number, it is clear that the procedure terminates after some
finite number i < q of steps have been executed. Combined with the arguments
above, this completes the proof. h

EXAMPLE 3.2. Let I denote the 10 3 10 identity matrix. Let10

20Z 5 hz [ R u Az 5 b, z > 0j ,

where A is the 10 3 20 matrix
?A 5 [I ? I ]10 10?

10and b [ R is the vector whose entries are each equal to 1.0. Suppose that
Y 5 D[Z], where D is the 2 3 20 matrix of rank 2 with columns 1 and 2 equal to

2e [ R , where e denotes the vector with each entry equal to 1.0, with columns 3
2through 10 equal to e , where

02e 5 ,F G1

and with remaining columns 0. It is easy to see that if we view z , j 5j
1011, 12, . . . , 20, as slack variables, then Z is a hypercube in R with 1024 extreme

2points, and Y 5 D[Z] is a two-dimensional (compact) polyhedron in R .



312 HAROLD P. BENSON AND ERJIANG SUN

If we apply the procedure for finding an initial element of Y to this example,ex

then, in Step 1, we discover that linear program (LPD ) has multiple optimal1

solutions and optimal value v 5 0. We therefore proceed to Step 2, where we solve1

linear program (LPD ). We find that this linear program has a unique optimal2
2 20solution z [ R given by

0 , if 1 < i < 10 ,2z 5Hi 1 , if 11 < i < 20 .
2 2 TThe procedure then stops, returning y 5 Dz 5 [0, 0] [ Y .ex

REMARK 3.3. In [9, Remark 4.1], Dauer and Liu informally suggest an idea for
finding an element of Y . However, this idea will not always succeed. For instance,ex

ˆif we apply their idea to Example 4.1 in [9] by choosing the initial extreme point z
of Z to be

Tẑ 5 [1, 1, 1, 61, 55, 55, 0, 0, 0, 7, 7] ,

then the reduced cost matrix R is given by

1 71 210 21]]S DR 5 .F G486 210 71 21

According to Dauer and Liu’s idea, since no column of R is a negative multiple of
nTˆ ˆsome other column of R, y 5Dz 5 (10 /9, 10/9) should be an extreme point of

ˆY 5 D[Z]. However, from [9], it is easy to see that this is false, since y lies in the
interior of Y. On the other hand, the procedure given above is fail-safe and, in this

Tcase, it is easy to see that it finds the extreme point y 5 (0.111111, 8.111111) of Y.

4. Pivoting among the extreme points of Y

Assume that we are given an extreme point y of Y. Then, since Z is compact, there
exists a point z [ Z such that y 5 Dz [4]. In fact, if necessary, we can always findex

such a point z. For instance, if y is generated by the initialization procedure given in
Section 3, and that procedure terminates in Step i, where i , q, then from the

iprocedure and Theorem 3.3, it follows that the point z generated by the procedure
i isatisfies z [ Z and y 5 Dz . If the procedure given in Section 3 terminates in Stepex

q, then as we shall see later, by solving a single linear program, a point z [ Z suchex

that y 5 Dz can be found. Therefore, we may assume that we can find such a point z,
if necessary.

In [9], Dauer and Liu suggested that to derive mechanics for pivoting in a simplex
method-like manner in Y from y [ Y to any adjacent extreme point to y in Y, oneex

should first solve the neighborhood problem for Y. The neighborhood problem [13,
14, 18] in Y is the problem of identifying all of the edges of Y emanating from y and
the extreme point neighbors to y in Y that lie at the endpoints of these edges. Given
these mechanics, we will be able, starting from y, to repeatedly pivot from extreme
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point to selected neighboring extreme point in Y. We shall adopt this general
approach.

The neighborhood problem has been solved for cases where a linear system of
equations and inequalities that represents the polyhedron of interest is available.
Since no such system is readily available for Y, we must develop new mechanics in
order to solve the neighborhood problem in Y.

To solve the neighborhood problem for y [ Y , we will need to address severalex

questions. For instance, will it be necessary to find a point z [ Z such that Dz 5 yex

in order to solve the neighborhood problem for y? From the discussion above, we
know that this can be done, if necessary. However, there may be multiple points z in
Z such that Dz 5 y [4]. In such cases, which point or points of this type, if any,ex

will be needed? How should we proceed if the point or points needed (or found) are
nondegenerate? How should we proceed if one or more of these points is
degenerate?

To help lay some groundwork for answering these questions, we will look further
into some notions studied in [9] and in [28]. This will involve a discussion of cones

nand some related concepts. Towards this end, recall that a cone is a subset W of R
such that lw [ W whenever w [ W and l > 0. A cone W is said to be pointed when

j nW > (2W ) 5 h0j. If s , j 5 1, 2, . . . , p, are vectors in R , then the cone W(S)
1 2 pgenerated by S 5 hs , s , . . . , s j is defined by

p

iW(S) 5 O l s u l > 0 , i 5 1, 2, . . . , p .H Ji i
i51

1 2 p nIf S 5 hs , s , . . . , s j is a subset of R , then a subset T of S is called a frame for
iW(S) when W(T ) 5 W(S) and, for each i [ h1, 2, . . . , pj such that s [ T,

iW(T \hs j) ± W(T ).

1 2 pREMARK 4.1. A set S 5 hs , s , . . . , s j may contain more than one frame, and the
cardinalities of these frames may differ [28]. However, from [7], when W(S) is a
pointed cone, then any frame T for W(S) is of the form

iT 5 hu u u i 5 1, 2, . . . , tji

ifor some u . 0, i 5 1, 2, . . . , t, where u , i 5 1, 2, . . . , t, are the extreme directionsi

of W(S). Given S, Wets and Witzgall [28] give a ‘primal’ algorithm for finding a
frame for W(S), under a certain nondegeneracy assumption. As noted by Wets and
Witzgall, it is easy to modify their primal algorithm or to create a ‘dual’ algorithm
that requires no special nondegeneracy assumption. We will assume later that such a
dual Wets–Witzgall algorithm is available for use as a subroutine when we present
the procedure for solving the neighborhood problem in Y. In the neighborhood
problem procedure, a modified Wets–Witzgall algorithm is needed to find frames for
pointed cones only. As we have noted, in such cases a frame is essentially
equivalent to the set of extreme directions of W(S). However, since Wets and
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Witzgall did not make this observation, and since they described their algorithm as a
means for finding a frame, to avoid confusion, we maintain consistency with their
presentation by using the concept of a frame in our presentation. Furthermore, we
shortly will also need the concept of a frame to describe some work of Dauer and
Liu [9] and of Dauer [8] that is related to the work in this article.

Recall that we have assumed that we may find a point y [ Y and a point z [ Zex ex]
such that y 5 Dz. Assuming that we have done so, let R denote the p 3 (n 2 m)
reduced cost matrix corresponding to an m 3 m basis matrix B associated with z (cf.
Section 3).

]jLet R 5 hr u j 5 1, 2, . . . , hj denote the set of columns of R, where h 5 n 2 m.
Dauer and Liu [9, Theorem 3.1] have claimed that since y [ Y , the image under Dex

of the edge E of Z defined by raising the kth nonbasic variable in z to a positivek
klevel, where k [ h1, 2, . . . , hj, is contained in an edge of Y if and only if r is an

element of a frame for W(R). Notice that since y [ Y , the cone W(R) is pointed.ex

Therefore, from Remark 4.1, this claim can be restated as saying that since y [ Y ,ex

the set of points D[E ] is contained in an edge of Y if and only if, for any frame Tk
kfor W(R), there exists some t [ T such that r 5ut for some u . 0. Later, Dauer [8,

]p. 287] claimed that when there exist two adjacent vertices z and z of Z that satisfy
]Dz 5 Dz 5 y, then ‘the reduced cost matrices for both of these vertices need to be

analyzed in order to obtain all of the potential edges of Y at y’. In the same paper,
Dauer [8, p. 285] also stated that when the point z [ Z chosen such that Dz 5 y isex

degenerate, then ‘one must determine which simplex tableaux’ for z ‘need to be
analyzed in order to determine the edges of Y’ at y. These latter two claims,
although not stated more precisely in [8], seem to contradict the initial claim of
Dauer and Liu [9, Theorem 3.1].

In what follows, we derive the theory that we will need to develop well-defined
mechanics for identifying all of the edges of Y emanating from y and the extreme
point neighbors to y in Y that lie at the endpoints of these edges, i.e., to solve the
neighborhood problem in Y. By using these mechanics, we will be able to pivot
from extreme point to extreme point in Y, and we will also resolve the apparent
contradictions in [8] and [9]. Towards this end, we present two key results.

nTHEOREM 4.1. Let W # R be a nonempty convex set, and let V5 C[W] 5
PhCw u w [ Wj, where C is a p 3 n matrix. Assume that v [V, that d [ R isv

nonzero, and that for some g . 0, (v 1ud ) [V for all u satisfying 0 ,u < g. Let wv
nbe any point in W such that Cw 5 v. Then there exists a nonzero vector d [ Rw

such that for all u satisfying 0 ,u < g,

(a) (w 1ud ) [ Ww

and

(b) C(w 1ud ) 5 (v 1ud ) .w v
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] ]
Proof. Choose u 5 g. Then, by assumption, (v 1ud ) [V. By definition of V, thisv] ]] ] ]implies that for some w [ W, Cw 5 (v 1ud ) [V. Let d 5 (1 /u )(w 2 w).v w] ] ]]Notice that since u . 0 and d ± 0, ud ± 0. Since v 5 Cw 5 Cw 2ud , thisv v v]]implies that w ± w. Together with the fact that u . 0, this implies that d isw

nonzero. Furthermore,
] ] ] ](w 1ud ) 5 w 1u(1 /u )(w 2 w)w

]5w .
]]Since w [ W, this implies that (w 1ud ) [ W, i.e. (w 1 gd ) [ W. By the convexityw w

of W, it follows that, for any scalar t such that 0 , t < 1,

(1 2 t)w 1 t(w 1 gd ) [ W .w

This implies that for any u satisfying 0 ,u < g,

(w 1ud ) [ W .w

Now suppose that u satisfies 0 ,u < g. Then

C(w 1ud ) 5 Cw 1uCdw w

] ]5 v 1uC[(1 /u )(w 2 w)]
] ]5 v 1 (u /u )[Cw 2 Cw]
] ]5 v 1 (u /u )[Cw 2 v]
] ]

5 v 1 (u /u )[(v 1ud ) 2 v]v

5 v 1ud ,v

]]where the second-to-last equality follows from the fact that Cw 5 (v 1ud ). Thev

proof is complete. h

Under more restrictive assumptions, the vector d in Theorem 4.1 can be chosenw

to have some additional properties beyond those given in the theorem. In particular,
we have the following result.

THEOREM 4.2. In addition to the assumptions in Theorem 4.1, assume that W is a
nonempty, compact polyhedron, that v is an extreme point of V, and that for all u
satisfying 0 <u < g, (v 1ud ) lies on a nontrivial edge E of V. In addition, let w bev

any extreme point of W such that Cw 5 v. Then, for any b . 0, a nonzero vector dw

may be chosen such that for all u satisfying 0 ,u < b,

(a) (w 1ud ) lies on an edge of W ,w

and

(b) C(w 1ud ) is distinct from Cw and lies on the edge E of V .w

Proof. First, notice that since W is nonempty and compact and v is an extreme
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] ]point of V, by [4] there exists at least one extreme point w of W such that Cw 5 v.
Let w represent any such extreme point.

21 ] ]Let W (E) 5 hw [ W u Cw [ Ej. Since the dimension of E is one, from [4],
21W (E) is a face of W of dimension one or larger. Notice by the definition of an

21extreme point that since w [ W (E) and w is an extreme point of W, w is also an
21 21 21extreme point of W (E). Either (i) W (E) has dimension one or (ii) W (E) has

dimension two or more.
21 21Case (i): W (E) has dimension one. Then, since W is compact, W (E) is a

ˆ ˆnontrivial edge of W with distinct endpoints w and w for some w that is an extreme
point of W. Let b denote an arbitrary positive number, and set

ˆd 5 (1 /b )(w 2 w) . (11)w

ˆSince b . 0 and w ± w, from (11) it follows that d ± 0. Suppose that u satisfiesw

0 ,u < b. Then 0 ,u /b < 1. Therefore, the point

ˆ(1 2u /b )w 1 (u /b )w
21ˆis a convex combination of w and w, so that it lies on W (E). Notice that

ˆ ˆ(1 2u /b )w 1 (u /b )w 5 w 1 (u /b )(w 2 w)

5 w 1ud ,w

21where the second equation follows from (11). Since W (E) is an edge of W, the
latter two statements imply that (w 1ud ) lies on an edge of W.w

Since Cw 5 v, it follows that

C(w 1ud ) 5 v 1uCd . (12)w w

Furthermore,

ˆv 1uCd 5 v 1 (u /b )(Cw 2 Cw)w

ˆ5 v 1 (u /b )(Cw 2 v)

ˆ5 [1 2 (u /b )]v 1 (u /b )Cw , (13)

where the first equation follows from (11), and the second equation follows from the
fact that Cw 5 v. Notice from (12) and (13) that C(w 1ud ) is a convexw

ˆcombination of v and Cw, both of which belong to E. Therefore, C(w 1ud ) alsow

belongs to E.
]21Since C[W (E)] 5 E, and E is nontrivial, there must exist some u such that

] ]
0 ,u < b and v 5 Cw ± C(w 1ud ). Therefore, Cd ± 0. Since u . 0, this impliesw w

that C(w 1ud ) is distinct from Cw.w
21 1 2 qCase (ii): W (E) has dimension two or more. Let hw , w , . . . , w j denote the

21 21 21extreme points of W (E) that are adjacent to w in W (E). Then, since W (E) is
compact and has dimension two or more, q > 1.

iWe claim that for at least one i [ h1, 2, . . . , qj, Cw ± Cw . The following
argument shows this claim. Since (v 1ud ) [ E for all u such that 0 <u < g, wherev
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ˆ ˆg . 0 and d ± 0, we may choose a value u for u such that 0 , u < g andv
n ˆˆ ˆ ˆ ˆv 5(v 1 ud ) [ E, where v ± v. Because v [ E, we may choose a point w [v
21 ˆ ˆW (E) such that Cw 5 v. Let

ˆ ˆd 5 (1 /u )(w 2 w) . (14)

ˆ ˆWe see that since u . 0 and v ± v, d ± 0. Furthermore, by (14),

ˆ ˆw 1 ud 5 w ,

so that

ˆˆCw 5 Cw 1 uCd
ˆ5 v

ˆ5 v 1 uCd ,

ˆwhere the second equality follows by the choice of w, and the third equality follows
ˆfrom the assumption that Cw 5 v. Since v ± v, the latter equation implies that

Cd ± 0.
ˆFor any u such that 0 ,u , u, from (14), (w 1ud) is a convex combination of w,

21ŵ [ W (E). Therefore, d represents a nonzero feasible direction of movement in
21 21W (E) at the extreme point w of W (E). It is easy to show that this implies that

for some l > 0, i 5 1, 2, . . . , q, not all of which are zero,i

q

id 5 O l (w 2 w) .i
i51

Therefore,
q

iCd 5 O l (Cw 2 Cw) .i
i51

iSince Cd ± 0, Cw ± Cw for at least one i [ h1, 2, . . . , qj, so that the claim is
established.

1By the claim, we may assume without loss of generality that Cw ± Cw. Then w
1 21and w are distinct endpoints of a nontrivial edge of W (E) # W such that

1 1Cw ± Cw . By using these properties of w and w and arguments taken from Case
1 ˆ(i) with w playing the role of w, we easily obtain the remainder of the proof. h

Suppose that y [ Y and that the goal is to solve the neighborhood problem at y.ex

By applying Theorems 4.1 and 4.2 with Z, D, Y and y playing the roles of W, C, V
and v, respectively, we see that to find any nontrivial edge E of Y emanating from y,
we may choose any extreme point z of Z such that Dz 5 y and search among the
edges of Z emanating from z for an edge that contains a point that is mapped by D
into the relative interior of E. Notice that this statement holds even if the chosen
extreme point z of Z is degenerate and even if there exist multiple extreme points of
Z that are mapped by D into y. Furthermore, given the edge E, Theorems 4.1 and
4.2 guarantee that for the chosen z, there will exist an edge of Z emanating from z
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that contains a point that is mapped by D into the relative interior of E. Thus,
Theorems 4.1 and 4.2 resolve the apparent contradictions and confusions in [8] and
[9]. They also establish a framework for developing mechanics for solving the
neighborhood problem in Y, as we shall now see. In this way, pivoting among the
extreme points of Y in a simplex-like manner will become possible.

Assume as before that we have found a point y [ Y and a point z [ Z such thatex ex]
y 5 Dz. As before, let R denote the p 3 (n 2 m) reduced cost matrix corresponding
to an m 3 m basis matrix B associated with z. In addition, as in Section 3, let N
denote the (n 2 m) 3 m matrix consisting of the columns of A that do not belong to

mB, let z [ R denote the vector of basic variables corresponding to B, letB
n2mz 5 0 [ R denote the vector of nonbasic variables, and let D denote the p 3 mN B

matrix that consists of the columns of D corresponding to B.
These data can be conveniently summarized in a ( p 1 m) 3 (n 1 1) decision-

outcome set simplex tableau T given by

???] 210 R D B bB 
???

T 5 . . . . . . . . . . . . , (15) ? ??
21 21I B N B bm

? ??

where I denotes the m 3 m identity matrix, the first m columns of T correspond tom

z , the next (n 2 m) columns of T correspond to z 5 0, and the rightmost column ofB N

T stores the current values of y and z . With T as an aid, we can now state theB

procedure for solving the neighborhood problem for Y at y.

Procedure for neighborhood problem solution in Y
Step 1. Given y [ Y , find any point z [ Z such that Dz 5 y. Construct aex ex

decision-outcome set simplex tableau T (cf. (15)) corresponding to z.
Step 2. Using T and any necessary alternate forms of T, find all nonbasic

columns corresponding to z such that the execution of a simplex method pivot in
each of these columns leads to an extreme point neighbor to z in Z that is distinct

1 2 tfrom z. Let R 5 hr , r , . . . , r j represent the set of all p-vectors obtained by deleting
all entries of each of these nonbasic columns beyond the pth entry.

kStep 3. Construct a frame F for W(R). Let F 5 hr u k [ Ij denote this frame,
where I # h1, 2, . . . , tj.

]k]Step 4. For each k [ I, find an optimal solution (z , u ) to the linear programk

(LP ) given byk

]
max u ,

s.t.
] k]Dz 2ur 5 y ,
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]Az 5 b ,
]]z, u > 0 .

For each k [ I, set
] ] ]kE 5 hy 1ur u 0 <u <u jk k

and
]k ky 5 y 1u r .k

Then the set of all nontrivial edges of Y emanating from y is given by hE u k [ Ij.k
kFurthermore, hy u k [ Ij is the set of all distinct extreme point neighbors in Y to y,

kwhere, for each k [ I, y [ E .k

Given y [ Y , to find a point z [ Z such that Dz 5 y as called for by Step 1 ofex ex

the procedure, one can, for instance, solve the linear program (LP ) given byy

p

]min O u ,i
i51

s.t.
] ]Dz 2u 5 y ,
]Az 5 b ,

] ]z, u > 0
n1p] ] ] ]for an optimal basic solution (z*, u*) 5 (z*, 0) [ R . Then, with z 5z*, Dz 5 y

holds, and it is easy to verify that z [ Z also holds.ex

To execute Step 2, one must first clarify the basic feasible solution displayed in
21tableau T for z as nondegenerate or degenerate. If B b . 0, this basic feasible

solution is nondegenerate. In this case, a simplex method pivot can be executed in
each of the nonbasic column of T to yield an extreme point neighbor in Z to z, so

] 21that R will contain all of the (n 2 m) columns of R. If B b . 0 does not hold, then
the basic feasible solution displayed in tableau T for z is degenerate. In this case, z
may have fewer or more than (n 2 m) distinct neighboring extreme points in Z. To
find all nonbasic columns corresponding to z such that for each column, for some
tableau representing z, the execution of a simplex method pivot in the column leads
to an extreme point neighbor to z in Z, one can use, for instance, the ‘transition node
pivoting’ procedure of Gal and Geue [13] (also see Geue [14]). In this procedure,
certain alternate tableaus T corresponding to z are generated, and the columns of R
in Step 2 are gathered from certain columns of these tableaus. For details, see [13,
14].

The frame F called for in Step 3 of the procedure can be generated, in the absence
of certain ‘degeneracies’, by the primal algorithm of Wets and Witzall [28]. As
mentioned earlier, one can also use an appropriate ‘dual’ algorithm. We have
developed a dual algorithm for finding F in Step 3 that requires no special
nondegeneracy assumption. From Dauer and Liu [9], the edges of Y emanating from
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y have directions that are in one-to-one correspondence with the elements of the
frame F constructed in Step 3.

Step 4 is taken directly from Dauer and Liu [9]. Notice in Step 4 that if i [ I and
one simply desires to move (or ‘pivot’) from y along the edge E until thei

ineighboring extreme point y to y in Y is found, one can solve a single linear
]i i]program (LP ) for an optimal solution (z , u ). The neighboring extreme point y in Yi i

to y is then given by
]i iy 5 y 1u r .i

5. Example

To illustrate the procedure for solving the neighborhood problem in Y (and, as a
result, for pivoting in Y), consider Example 4.1 from [9]. In this example, m 5 8,
n 5 11 and p 5 2. The problem data are given by

9 9 2 1 0 0 0 0 0 0 0 81
8 1 8 0 1 0 0 0 0 0 0 72   1 8 8 0 0 1 0 0 0 0 0 72
7 1 1 0 0 0 21 0 0 0 0 9A 5 , b 51 7 1 0 0 0 0 21 0 0 0 9   
1 1 7 0 0 0 0 0 21 0 0 9
1 0 0 0 0 0 0 0 0 1 0 8   0 1 0 0 0 0 0 0 0 0 1 8

and

1 0 1/9 0 0 0 0 0 0 0 0D 5 .F G0 1 1/9 0 0 0 0 0 0 0 0
11 2In this case, Z # R and has eleven extreme points, and Y # R has five extreme

points.
Suppose in Step 1 of the procedure that we are given the extreme point

1 1T ] ]S Dy 5 , 8 (16)9 9

of Y. For instance, y may have been generated by the initialization procedure given
in this article or by a previous outcome space pivot to y from some neighbor of y in
Y. The steps of the neighborhood problem procedure with y given by (16) proceed
as follows.

Step 1. Solving linear program (LP ), we obtain an optimal basic solutiony
T]((z*) , 0, 0), where

T](z*) 5 (0, 8, 1, 7, 56, 0, 0, 48, 6, 8, 0) .

]Then, with z 5z*, z [ Z and Dz 5 y. The extreme point z of Z is degenerate. Oneex

basis matrix B for z uses basic variables z , z , z , z , z , z , z and z . The4 3 8 6 2 9 10 5

decision-outcome set simplex tableau T for z with this basis matrix B is given by
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?0 0 0 0 0 0 0 0 2/9 1/9 1/9 ? 1/9?
?0 0 0 0 0 0 0 0 27/9 1/9 28/9 ? 73/9 ? 

. . . . . . . . . . . . . . . . . . . . . . . .
?1 0 0 0 0 0 0 0 25 2 27 ? 7? ?0 1 0 0 0 0 0 0 7 21 21 ? 1??T 5 0 0 1 0 0 0 0 0 6 21 6 ? 48 ,? ?0 0 0 1 0 0 0 0 255 8 0 ? 0s ?
?0 0 0 0 1 0 0 0 0 0 1 ? 8? ?0 0 0 0 0 1 0 0 48 27 26 ? 6?
?0 0 0 0 0 0 1 0 1 0 0 ? 8?
? 0 0 0 0 0 0 0 1 248 8 7 ? 56?

where the meaning of the circled number will be explained below, and where the
three nonbasic columns in the far right side of the body of T correspond to the
variables z , z and z , respectively.1 7 11

Step 2. Since tableau T displays a degenerate basic feasible solution, we use the
transition node pivoting procedure of Gal and Geue [13] to execute this step. This
procedure tells us that by performing a simplex method pivot in T in either of the
nonbasic columns corresponding to z or to z , we could generate a distinct1 11

neighboring extreme point in Z to z. Thus,
1 T(r ) 5 (2 /9, 27/9)

and
2 T(r ) 5 (1 /9, 28/9)

each belong to R. Furthermore, the Gal and Geue procedure calls for generating the
alternate decision-outcome set simplex tableau T 9 for z obtained by performing a
simplex method pivot using the circled number 8 shown in T as the pivot element.

3Upon so doing, a third element r , given by

3 T(r ) 5 (71 /72, 21/72) ,

of R is generated, and the Gal and Geue procedure stops.
Step 3. Using the ‘dual’ algorithm mentioned earlier that we have devised, we

find that a frame F for W(R) is given by
2 3F 5 hr , r j .

Thus, we set I 5 h2, 3j.
Step 4. With k 5 2 and with k 5 3, linear program (LP ) has optimal solutionsk

]2 T][(z ) , u ] 5 (0, 0, 9, 63, 0, 0, 0, 0, 54, 8, 8, 8)2

and
]3 T][(z ) , u ] 5 (4 /5, 8, 9 /10, 0, 252/5, 0, 11/2, 487/10, 61/10, 36/5, 0, 4 /5) ,3

respectively. Therefore, y has two nontrivial edges emanating from it in Y. These
edges are given by
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] ]
E 5 h(1 /9, 73/9) 1u(1 /9, 28/9) u 0 <u < 8j1

and
] ]

E 5 h(1 /9, 73/9) 1u(71 /72, 21/72) u 0 <u < 4/5j ,2

1 T 2 Tand ( y ) 5 (1, 1) and ( y ) 5 (9 /10, 81/10) are the two extreme point neighbors to
ky in Y, where y [ E , k 5 1, 2.k
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